Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

نویسندگان

  • Dongliang Chao
  • Changrong Zhu
  • Peihua Yang
  • Xinhui Xia
  • Jilei Liu
  • Jin Wang
  • Xiaofeng Fan
  • Serguei V. Savilov
  • Jianyi Lin
  • Hong Jin Fan
  • Ze Xiang Shen
چکیده

Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g(-1) at 30 mA g(-1) and ∼420 mAh g(-1) at 30 A g(-1), which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors

High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capacitance of the double layer. The present work demonstrates that the pseudocapacitance of the nanos...

متن کامل

Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors.

Pseudocapacitors, which can store more energy at high charge/discharge rates, have attracted considerable attention. The performance of a pseudocapacitive material mainly depends on the interaction between electrode materials and the electrolyte ions. However, the understanding of the interaction is still limited. Here, the performance of Ti2CT2 (T = O, F, and OH) nanosheets as pseudocapacitor ...

متن کامل

3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydro...

متن کامل

Ultrathin HNbWO6 nanosheets: facile synthesis and enhanced hydrogen evolution performance from photocatalytic water splitting.

Ultrathin monolayer HNbWO6 nanosheets have been successfully prepared through a simple and ultrafast ion intercalation assisted exfoliation method. These obtained highly dispersed nanosheets present enhanced photocatalytic hydrogen evolution activity compared to the nanosheets prepared by the traditionally time-consuming process.

متن کامل

Large‐Area Carbon Nanosheets Doped with Phosphorus: A High‐Performance Anode Material for Sodium‐Ion Batteries

Large-area phosphorus-doped carbon nanosheets (P-CNSs) are first obtained from carbon dots (CDs) through self-assembly driving from thermal treatment with Na catalysis. This is the first time to realize the conversion from 0D CDs to 2D nanosheets doped with phosphorus. The sodium storage behavior of phosphorus-doped carbon material is also investigated for the first time. As anode material for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016